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coils and inertia wheels or only coils is both feasible and de-
sirable.

The electromagnetic actuation system requires less volume
and weight and has greater reliability than other means of
actuation, such as mass dispensing with cold gas or bipropel-
lants. It also compares favorably to the gravity gradient and
solar pressure techniques when the overall attitude control
system is considered.
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Structural Factors and Optimization of

Space Vehicles

Freperick W. Ross*
General Dynamics Corporation, San Diego, Calif.

IN the analysis of space vehicles, structural factors—
originally defined as means of identifying structural
mass—have been more recently treated as functions. This
gives them a quite different connotation.

In 1947, Malina and Summerfield' defined the structural
factor as the ratio of stage mass ejected, m., to stage mass with
propellant, 8 = m./(m, + m,), and, so defined, it pertains
only to one particular stage, and involves neither the pay-
load of that stage nor the payload or mass of any subsequent
stages. Another factor alternately used is r, = m./(m. +
mp + my), m, being the stage payload; this factor includes
all subsequent stages and their payloads.

Both factors are used by some authors, * the choice de-
pending upon the application, and both are convenient
realistic terms used to identify particular structures. In
analyses they are used as parameters, modifications in design
being handled by usual methods of variable parameters or
parametric curves.

However, in recent analyses,* ° for the optimum number of
stages, n,, the optimum is assumed to be at 06/0n(or or,/0n)
= 0, and & (or r,) is used as a function determined by n.
With this usage 6 (or 7,) is no longer an identifying parameter
but a function describing a particular manner of variation of
structural hardware mass with variation of n—e.g.,, m, =
(constant)(ms + my).

To use the factor in this sense implies a foreknowledge of
the functional influence of all the complex factors which de-
termine m,. Since it would be a monumental task to deter-
mine these precisely, it is pertinent to learn how sensitive
important vehicle characteristics are to certain structural
factors used as functions.

The system specific impulse, I,,—introduced in a previous
paper?® as a measure for comparing propulsive systems that
have wide differences in mass, and expressed in terms of é by
Eq. (11) of Ref. 3—for a single-stage vehicle becomes, with
the aid of Eqs. (4) and (6) of the same reference,

I = Io{1 — [log (1 + r.G.)1/log G} ¢h)
where G, = (m, + m, + my,)/mi. At 0l,,/0G = 0, where
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G = Gao, Uso)max = 1/(1 + 7.6.). This depends only upon
r, and G, and is the same? as that for a multistage missile
with proportionate staging.! Fig. 1 shows, after adjusting
forr, = 8(1 — G,™), that the essential difference introduced
between the two curves obtained by treating r, or § as con-
stant, enters only for G < 3.

For proportionate multistaging, 7., can be given either by
Eq. (24) of Ref. 3 in terms of 6 and n, or by I, = —I.(c/n)/
log {e~e/» — r,} in terms of r, and n. These equations, and
a similar equation in terms of two structural factors defined
by Cooper® for m, = em, + fm,, where the first term is the
“engine”” and the second the “tankage’” mass, are all of the
form

Io/lIp = —(¢/m)/[log (de™" — B)] 2

where the constants A and B are determined by the struc-
tural funetions 9§, r,, or € and f.

Similarly, the gross mass ratio m,/m; is given, respectively,
by

G — (1 —_ 5)n(e*c/n — 5)'*71, = (8_0/" — rs);n —
[(1+ frem» — (e + )]
where ¢ = v,/GI,, or in general by
G = R(e—en — 8)™ 3)

where the quantities B and S are determined by §,r,, or
eand f.

Eq. (2) has a- maximum, which for the form with 0 is at
n — o and for the other structural functions is at a finite n.
Similarly, Eq. (3) has a minimum at n.. ranging from a small
finite integer (5 in Fig. 2) to infinity, depending upon the
choice of structural function. Because of this sensitivity
to choice of structural function, the optimum n,—i.e., the
number of stages to give minimum G—is seen to be dependent
more upon the selection of this function than upon the op-
timizing procedure, and to this extent is indeterminant.

Instead, if we observe that G decreases sharply from an in-
finite value where = is minimum, and levels off to a broad
minimum (Fig. 2), regardless of the structural function used,
we can define a preferred® minimum number of stages deter-
mined at the keen of the curve rather than the optimum at
minimum G. In Fig. 2 this gives n = 3 or 4 for the preferred
n rather than a range from n = 5 to infinity for the minimum
G. 1In any practical application the small increase in G ob-
tained by reducing n from 5 to 3 or 4 is more than offset by
the reduction in complexity resulting from fewer stages.
The preferred number, n,, being independent of the choice of
structural function, is then more closely related to practical
design circumstances and is more definitive.

We can locate n, at the knee of Eq. (3) from the curve
graphically or from the integral portion of n, = 1 4 (K —
1/log S)c. The term —1/log S is derived from the minimum
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number of stages given by ¢~/» — § = 0. The constant
Kc is added as a first linear correction for the horizontal
stretching of the knee introduced by an increasing ¢, with K
selected from observation to be 0.35 for typical cases.

It is concluded on the basis of the foregoing that the use of
structural factors as functions in optimization analyses intro-
duces the necessity of using either (1) a more definitive strue-
tural function when optimizing for minimum mass or (2) a
more definitive optimization procedure such as the one sug-
gested above based on the logarithmic nature of the equa-
tions. Because of the difficulties of the definitive specifica-
tion of a structural function, the latter alternative appears
preferable.
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On Transient Magnetohydrodynamic
Flow in Channels

L. N. Tao*
Illinois Institute of Technology, Chicago, Il

N a recent paper Yen and Chang! have, using the Laplace
transform, studied the magnetohydrodynamic flow in a
channel of perfectly conducting walls with a transverse mag-
netic field and a sudden change of the axial pressure gradient.
It is the purpose of this note to investigate the flow in a chan-
nel of insulating walls by another method for any change in
the time-dependent axial pressure gradient, and also to point
out a feature not adequately discussed by Yen and Chang.
The velocity field and the induced electric (and magnetic)
field are of the oscillatory type with decaying amplitudes,
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particularly when the magnetic Prandtl number is nearly
unity.

Taking z-axis along the channel, the governing equations
of one-dimensional unsteady flow are
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where P is the time-dependent axial pressure gradient. The
initial and boundary conditions are

t=0: u=uy), P=P,=const, E, = E,
t>0;,y = *h: v=0,P =P + P, E,

E@ + E (2
where the subscript s denotes the steady state. E, and E;

are unknown a priori, they must be found from the integra-
tion of current density,

= const

h h
t20: [CGay= [ mtuByy =0 @

However, owing to the property of symmetry the instan-
taneous electric field at both walls y = =h must be the same.
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Fig. 2 Time history of U = u/u; (inagnetic Prandtl
number = 1)



